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ABSTRACT

The purpose of this paper is to describe some of the conceptual

qualitative ideas needed to test nonlinear models empirically and to modify

them. Some relationships among these ideas and some computer applications

of them are also examined to elucidate the general process of nonlinear

modeling.

Two examples are presented along with a discussion of bifurcation,

catastrophe and maximum likelihood estimate methods. It is concluded that

many observed phenomena in institutions are suggestive of nonlinear dynamics

models. A number of standard types of dynamic behavior are well understood

mathematics (catastrophe, periodicitr, stochastic effects) and may be used

to construct plausible models.
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A"PLICATION OF NONLINEAR MODELS

Introduction

Becau;:o applications of nonlinear models to the institutional setting

are relatively new, the terms "nonlinear" and "model" need to be contrasted

with the more familiar linear models which have a lengthy history and a well

developed literature. From the mathematical point of view. linear models are

defined by equations in which no quantities other than numerical ones occur

to a higher power than the first (and there are no product terms). Examples

of linear models are:

watt) a + by(t)
[s dt

dW

y(t+1) = a + by(t) + Lse(tg

The terms in the square brackets represent stochastic noise and may be omitted fro

the model altogether. Solutions are well understood and can often be calculated

explicitly. There is a "superposition principle" whereby linear combinations

of solutions again form solutions. Equilibrium states are unique. While

these features are mathematically desirable and practicable, there is one

difficulty. Linearity is extremely special; most equations are nonlinear.

Many natural phenomena display features that suggest nonlineariy, for

example, multiple equilibria or the absence of any plausible superposition

principle. For some purposes, linear models nay be perfectly adequate, but

it is important not to force apparently nonlinear phenomena into a linear

framework.

5
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When contemplating nonlinear models it is easy to be bewildered by their

apparent variety. The possible forms are limited only by the imgaination of

the modeller. However, we should resist the temptation to place too much

emphasis on the form in which the equations are written: It is after all the

solutions that count, not the symbols used in the equation. Much of the

recent progress in understanding nonlinear systems arises by ignoring the

form of the equations and investigating the qualitative behavior of solutions.

Do these tend to a steady state? Do they oscillate periodically? Do they

change quickly or slowly? Are they following a clear pattern, or do they

seem random?

One disadvantage of nonlinea.r. equations is that they can seldom be

solved explicitly by a formula. They can sometimes be replaced by

appropriate linear models, via approximation (ignoring higher order terms)

or change of variables. These pseudo-linear equations, hoWever, remain a

special, atypical class. Real progress can best be made when the analytical

approach is augmented by conceptual ideas such as the quali:ative theory of

topological dynamics and by numerical simulation. or an introduction to the

qualitative theory see Arrowsmith and Place (1982); for a survey see

Guckenheimer and Holmes (1983).

The second interest here is in "models" and how to apply them. The

traditional models in the physical sciences are mainly differential equations

(for continuous data) and difference equations (for discrete data), describing

how a system changes its state. This has not been true for social sciences

where data are usually collected in order to build a verbal picture of the

phenomenon. This verbal picture is also used to state predictions. The



advantage of the mathematical model arises when we wish to test the model

empirically or when we wish to modify it to take account of additional

effects.

Institutional res!archers who wish to make real progress dealing with

r -:'.inear phenomena will need to bring to their efforts some qualitative

treory of topological dynamics, singularity (catastrophe) theory, timeseries

analysis, stochastic differeatial equations and numerical simulations. The

verbal models will need to be expressed in a mathematical form for empirical

testing and modification. In most cases this will mean using a mathematician

as nnsultant ,r as a team member on a specific research project.

Purpose

The purpose of this paper is describe some of the conceptual

qualitative id needed to test nonlinear models empirically and to modify

them. Some relationships among these ideas and some computer applications of

them are ,lso examined to elucidate the general process of nonlinear modeling.

Literature Review

A review of the literature yields several examples of nonlinear model

application, t.o institutional problems. Zeeman (1980) provided the broad

concepivil framework when he stated the purpose of une nonlinear model

(catastrophe las to give global insight, to reduce arbitrariness of

description, to synthesize seemingly unconnected observations, to explain

seemingly ine:;plicable features, and to suggest unsuspected possibilities.

This non..--tear model has been applied for these purposes to problems of

financial attrition (Cossu, 1980); faculty vitality, teacher expectations,

and student attrition (Starnan, 1982); collective bargaining (Johnson, 1980);
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and admission policies (Johnson & Lacher, 1982) within the field of institu-

tional research. Parts of the catastrophe model have been used for other

purposes. The hysteresis effect has been used to describe a model for faculty

rewards (Shapiro, 1978), a difference equation was used in a model describing

dynamic budget equilibrium (Hopkins & Massy, 1977), and a discipline-related

productivity study used a three-dimensional model to show the weights of

graduate and upper divisions in relation to an objective function (Sloom,

1983). While many related applications have been made of catastrophe models,

as yet, there exists no case where a model of institutional behavior has been

set up and tested against real data; but there appear to be no essential

obstacles to this. Experienced institutional researchers now have several

case studies to draw on for methodology. These include demographic modeling

(Cobb, 1978; Cobb et al., 1983), biological membrane dynamics (Cobb & Zachs,

1983b), effects of alcohol on driving performance (Zeeman, 1977; Cobb & Zachs,

1983b), thyroid dysfunction (Seif, 1979),heterozygotic advantage (Cobb g

Zachs, 1983b), multistable perception (Stewart & Peregoy, 1983; Peregoy &

Zeeman, 1983), political preferences (Peregoy, 1974) , and economic stagfla-

tion (Fischer, 1983).

The main problems encountered are (a) adequate definition of variables;

(b) selection of suitable class of models; (c) adequate measurement of

variables; and (d) design of experiment where possible, or selection of

suitable retrospective data where not.

Two examples of how to use nonlinear models are presented here to

illustrate some of the potentials and problems.
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Example 1: Administrators' Responses to Innovation

The first example takes a verbal description of periodic phenomena found in

university administrators' responses to innovative ideas (Walker, 1983).

Usually, innovation actually occurs; in universities because some

one person, or occasionally two or three people, catch on fire

about an idea and simply will not put it down. They push and

test the existing structure to its limits, often arranging end

runs that are annoying to those above them in the hierarchy.

Basically, they subsidize the new scheme out of their own

perspiration and overtime. Having succeeded in attracting

acceptance from "the establishment" within the organization,

but still sailing under the colors of "innovative verve," they

then apply successfully for subsidization. Once they are

included in the formal budget structure of the organization,

the innovations of the program begin to cost more and more or

less and less. Again, the normal tendency in organizations is

to spend new monies to make existing programs more comfortable

rather than to expand and to continue to innovate. .

(An example of a folk festival is discussed)

. . This scenario is, it seems to me, characteristic of the

life cycle of such programs. To complete the description of the

scenario at the university with which I am familiar, the demand

for expansion and full subsidization occurred in a bad budget

year. The director was told that regretfully the university could

not expand its commitment and indeed, might have to cut back some.



t3

The director with equal regret indicated that the event !;hould

be dropped.

Nothing happened for two or three months. Then another

individual came to the administration, indicating that she

thought the program should and could be rescued key contracting

commitments and events, by a return to the principle of calling

on volunteers, by limiting the celebration to a weekend in the

fall as in the beginning and by relying on faculty families to

supply housing to visiting musical groups. Modest postage and

telephone subsidization and a small ..financial stipend for the

new organizer were all that was required. The cycle began

again. (p. 53)

In the spirit of nonlinear dynamic modeling, we seek to construct a

mathematical scenario consistent with these phenomena. It is for

explanatory and illustrative purposes only: A serious study might well

require modifications. The ingredients of the model are the following

two variables:

E = the amount of voluntary effort committed to the project.

= the level of funding agreed to by the institution.

B,,,1 are assumed positive.

Let us assume that there is a critical level of effort E . Below
crit

this level, the administration will offer only minimal support. Above it,

however, it will offer funding roughly proportional to the effort sustained.

The effort itself is subject to another "threshold" effect. When

officialfundingrisesabovealevelFcricthe voluntary effort becomes hard

10
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to sustain (due to increased bureaucracy, administrative chores, a feeling

that the event is now 'old hat,' and so on). On the other hand, with official

fundingbelowF,the voluntary effort is stimulated (by the challe,ge of
crit

raising funds).

foinatly, we assume that the administration adjusts its funding policy

relatively efficiently and quickly, whereas the response of the voluntary

effort is less organized and on the whole slower.

The simplest differential equation model consistent with these hypotheses

has a phase portrait shown schematically in Figure 1.

Figure 1. A model of oscillatory behavior in innovative

ideas. E = lovel of voluntary effort, F = level of

official funding. F moves rapidly in a vertical direction

towards the equilibrium curve (solid line). Then there is

a slower motion on the curve. Jump behavior is forced at

each of the two folds.

The solid line represents the funding level perceived as being appropriate by

the administration. There is thus a fast flow in which F adjusts (vertically

in the diagram) to the level S. There is also a slow flow on S in which E

(and F) adjust relative to F .

crit

11,



At,sume E start.!.., at. a low value, with I.' also low, then

inetedwes. tAsI.; passes E , , admin tit Fallon "recc)git zes" t now vent
crit.

and supplies funding at a much higher level, so F rises rapidly. However,

innowgratortilaillocritso the effort. E starts to decrease. Owing In

zig-ag shape of S, however, the level of F remains high-though now doc:reas-

ing--until E drops to a level E. At this point, the administrittion withdrawn

itssupportaudFdropsrapidlY.SincenoldF<Fcricstarts to increase and

the cycle starts anew.

A less schematic picture of the flow shows that a limit cycle is re5pon-

sible for the oscillations, as in Figure 2.

Figure 2. A dynamical systems model approximating

Figure 1 leads to a limit cycle oscillation.

It is now possible to write down a reasonable system of equations for E and

F to describe the motion. For example, the following would work:

12
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e dF(b)
- 0(E,F)

dt

dF(t)
- (14F -F)

dt crit

where 0 (E,F) is zero on the curve S. For instance, we might take

0 (E,F) = f3F + 1+(F-d)2 a E

where E,a, k, 6, v are adjustable parameters and E is small. This type of

equation is known as a relaxation oscillator and is well known in engineering

and in chemistry.

One of the predictions of this model is the occurrence of a second

threshold value E
o

:
This arises when we require S to be a continuous curve.

Other predictions may be generated by varying the parameters slightly.

For example, consider the effect of E crit' When it is much higher (or much

lower) the oscillations do not occur.

Inotherwords,forlargeFcrit the growth is as follows: First a slow

increase in E, then a sudden incre in F, then a steady increase (decrease

is also possible) to a steady state. The innovation becomes a standard

fixture.IfFcrit is low enough, there is only a slow increase of E to a

steady state with low F: The innovation "never gets off the ground."

These predictions appear to be in reasonable qualitative agreement with

observations. Unlike a purely verbal model, they are at least in principle

amenable to quantitative study. We look at general mathematical and practical

difficulties of doing this below.

la
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Example 2: Promotion within an Organization

The second example starts with a mathematical model of promotions

within an organization and shows how to go beyond the verbal statements.

To fix our ideas and introduce a problem of relevance to institutions,

we consider some work of Sorensen (1974, 1984) on the promotion structure

within an organization. Stripped to its mathematical essentials, this may

be stated as follows. We introduce the following variables:

y(t) = an individuals' level of attainment at time t

a = his or her level of resources

b = constraints on promotion due to the pyramidal structure of

the organization

Here a and b are assumed constant. (Our a here is Sorensen's z. To make

later analysis more natural we assume b is negative, so a constraint of -10

is more restrictive than -5.) Then Sorensen argues for a model of the time-

variation of y taking the form

dy (t)
a + by(t)

dt

(1)

This is an inhomogeneous linear constant-coefficient ordinary differential

equation in a single variable L. It has the general solution

a a
y (g) = (yo + b

e
bt

b
(2)

where yo is an arbitrary constant representing the initial condition

y(0) = yo (3)

Notice that the model predicts the existence of a maximum level of attainment

lim -a
Y = y (t) =
m T-00D

(4)

(which we here assume to be greater than yo).

14
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An individual's career is represented as a steady increase towards the

maximum ym, at a rate which gets slower as time increases ;due to a lack of

"room at the top"). Of course, in practice the motion occurs in discrete

jumps so the model should be considered as a "smoothed" version of reality.

The basic onclusions of Sorensen's model could be summarized verbally as

follows: (a) Individuals achieve promotion up to a 'ceiling' level ym;

(b) the closer they are to their ceiling, the slower is any further promotion;

(c) an individual with higher resources has a higher ceiling; and (d) an

individual subject to greater constraints has a lower ceiling.

An immediate question is: to what extent does the mathematical model

(1) tell us anything beyond the plausible but somewhat trite verbal picture?

It would be easy for a mathematician to prefer (1) just because it is mathe-

matical, whether it really adds anything, and for the non-mathematician to

prefer a verbal statement, for the converse reason. The worth of a model,

however, should be judged according to more than mere taste.

This issue is confused, rather than clarified, by the extreme simplicity

of the mathematical model (1). If something much more complicated were

similarly reduced to the verbal level, the imprecision and incompleteness of

the verbal description would be more manifest. But that is not the crucial

point. As stated earlier, the advantages of a mathematical model over a

verbal one, in this kind of exploratory modeling, arise not when we state its

predictions (which can always be done verbally) but when we wish to test it

empirically, or wish to modify it to take account of additional effects.

For example, consider Sorensen's model. By treating the resource variable a

or a linear combination of various measureable resource variables (education,

1C
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background, etc.)

d = a + alxl + + akxk

it becomes possible to use empirical data to estimate parameters and test the

model (Sorensen, 1979, 1983).

Bifurcation and Catastrophe

Many models contain adjustable parameters, some of which may represent

external variables that can influence behavior. If a linear system has such

control parameters, its unique steady state will, in general, vary continu-

ously as the parameters change. For example in Sorensen's model, the value

y
m

a/b varit atinuously with a and b.

For nonlinear systems this is no longer time. Varying parameters can

cause the steady state to break up into several states (bifurcation) or change

discontinuously (catastrophe). Consider for example, our limit cycle model of

innovation, but suppose for the moment that E is arbitrary held fixed. Then

there are either 1 or 3 steady states for F, depending on whether E < E0,
0

E>EcritorEo<E<Ecrit.(A multiplicity of states is typical of non-

linear systems.)

Now consider adjusting E slowly, allowing the system to settle to

equilibrium after each adjustment. This is called quasi-static variation.

If E starts small and increases there will be a sudden jump in the steady

state as E passes E
crit

. This is known as a catastrophe jump or limit-point

bifurcation. Note that on reversing the motion of E, the quasistatic

hypothesis leads to a jump back at E0, not at Ecrit.

16
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Figure 3. Hysteres;s in the model of innovative ideas

when E is allowed to vary quasistatically.

The funding level F jumps in different

places according to the direction of motion of E

This phenomenon, known as hysterisis, cannot occur in linear models. It

implies a "history-dependent" behavior of some theoretical interest, since

numerous social phenomena exhibit a similar affect. One of the best known

classes of static bifurcations is the elementary catastrophes of Thom (1975)

which classify the multi-parameter bifurcations of steady states of gradient

differential equations. The best known of all is the cusp catastrophe

x3 +ax + (3 = 0 (5)

where both a and (3, are "control parameters." This represents a surface

which is either 1- or 3-sheeted over the (a,B) control space. The cusp

differential equation is

d x 3_(
dt

+ (3)

= - grad V(x)

17
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where the potential V is given by (6)

v
x
4

(x) = + ax
2

+ 13x.

4 2

We assume the reader has some familiarity with the basic ideas of this theory.

If not see Zeeman (1977), Poston and Stewart (1978), Saunders (1980), Gilmore

(1981), Thompson (1982). For an introduction aimed towards institutional

modeling, see Johnson and Lacher (1983) and Zeeman (1980).

An alternative source of models, with many mathematical similarities, is

the theory of time.series discrete dynamic models, either deterministic or

stochastic. We lack space here to discuss these ideas, which is not to deny

their interest or importance. (See Gregson, 1983.)

Maximum Likelihood Estimation

An objection sometimes raised to the use of multi-state models in data-

filting may be phrased thus: Allowing more than one predicted state

automatically enlarges the chances of a fit, but in a trivial way.. Two

guesses are better than one:

Figure 4. How multivalued curves apparently lead to trivially 'better'

fits to data. (a) poor fit, (b) improved fit, (c) close fit.

Consideration of probability densities resolves this difficulty.

18
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The objection is Lest dealt with by re-interpreting the data-fitting

c%ercise as one involving not curves, but probabilities. The issues are most

clearly seen if we consider the prediction of a simple observation. The

classic probabilist's example is the toss of a fair coin. There are two

outcomes, H and T. A single-state prediction (say H) will be correct about

half the time. A two-state prediction (H or T) is of course always right!

it is automatically "better" to make two predictions rather than one.

Hcwevc , consider the corresponding probability densities applied to the

result of a series of measurements.

Figure 5. Probability histograms for (a) a biased coin, (b) a fair coin.

With a fixed total probability of 1 to be assigned, there is

no automatic advantage in having two states (H,T) rather than

one (H). Which fits best depends on the coin.

First, imagine a fait coin. Clearly (b) will provide a better fit to

the empirical frequency histogram than (a) will. However, now imagine a

biased coin, which .always shows heads. Now (a) gives the better fit. It is

not true that adding an additional state leads to an automatic improvement.

19
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On the contrary, it can worsen the fit. Thc reasn as that in fitting a

probability density, the object is to distribute a Lotal probability of 1

over the possible states. If a new s'cate is added, it "steals" probability'

from the old ones. In other words, on the level of probability densities,

there is no advantage in assuming multiple states (unless they are actually

occurring).

The same leasoning holds trov catastrophe- theoretic models (or others

predicting multiple states) where the prediction depends on control parameters.

For each control value there is a probability density Pa(x) for the observa-

tion x. Thus,. we are fitting a family of densities, not a curve or surface.

In cusp-type models, the relevant densities can be found by replacing

the cusp equation (6) by a related stochastic differential equation and seek-

ing the "stationary probability density" of the result. (See Cobb, 1978;

Cobb & Zachs, 1983.) If the noise term is a Wiener Process ("White noise")

then one is led to the exponential family.

Figure 6. Family of stationary 'probability densities for the cusp-type stochasti

differential equation. Here a is fixed and the'curves show the transition to

bimodality as a varies. (Courtest of Cobb.)

20
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where K
abe

is a normalizing constant. Typically, a and b are (approximately)

linear functions of exogenous variables

1

a =a +ax + . +ax.
0 1 1 k k

b = b + bl x
1

+ . +b
k
X
k

and x represents the deviation of a measured state y from some reference

state A:

x = y - A.

The problem is to estimate A, a., b.. It is solved by computing a maximum

likelihood estimate. This produces the parameter values which render it most

ikely that the observations come from a population with the corresponding

family of densities. A computer program to perform this estimate (by an

itetrative method) has been developed by Cobb (in a more general form).

Figure 7. A catastrophe jump in a noisy system: "stochastic tunnelling can lead

to a jump earlier than the fold point. (Courtesy of Cobb.)

Figure 8. An example of cusp catastrophe data-fitting. The data from

Napanstek et al (1974), demonstrated phase transitions in biological

membranes. See Cobb and Zachs (1983) for details.

21
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It provides a print-out of the best-fitting parameters, along with other

information on the goodness of fit.

Conclusions

Many observed phenomena in institutions are suggestive of nonlinear

dynamic models. It is especially important not to select data or experimental

methods that "design away" multimodel behavior, hysteresis, etc. Many

standard methods do this, sometimes in "hidden" ways (e.g., averaging,

smoothing linear regression, analysis of variance). A number of standard

types of dynamic behavior are well understood mathematically (catastrophe,

periodicity, stochastic effects) and may be used to construct plausible

models. In suitable cases there exist methods to fit these to data and

hence, to make useful predictions. This exercise has been carried out in

full, with reasonable success, in a number of areas in the social and bio-

logical sciences. In the physical sciences, with an appropriately more

mathematical methodology, similar models have proved highly successful.

While no extensive work along these lines yet exists in institutional

research, the prospects are good and the necessary techniques exist. They

require cautious use, and some expert advice is worth seeking to ensure a

reliable approach, but they tackle an important and novel area: the search

for genuinely nonlinear affects and models.
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